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Abstract—A Pull Request (PR) is a code change proposal
submitted by a developer for review by other team members.
For a reviewer, prioritizing and selecting a PR to review is not
easy: this selection can depend on many factors, including the
extent of the change, the time available, their state of mind,
etc. Existing tools and platforms like GitHub offer support for
visualizing code changes and recommending reviewers to assign
a PR to. However, little research has been done on providing
support to the reviewer to select a PR to review from a list
of (assigned) PRs. In this paper, we propose PRECOG, a Visual
Studio Code plugin to help reviewers select the appropriate PR by
enabling more informed decisions. PRECOG offers a radar chart
visualization of the PR’s difficulty across various dimensions, and
ranks PRs according to their difficulty. We evaluated PRECOG
with 9 developers in a user experiment on the Java Spring
Framework. Our results show that although participants differed
in how they assess PRs’ difficulty, all agreed that the synthetic
view provided by PRECOG helps them make rapid, informed
decisions about which PR to review first. PRECOG is available
at https://github.com/snail-unamur/PRECOG. A demonstration
video is available at https://youtu.be/qPlr6lmgyMM.

Index Terms—pull request, code review, developer experience,
measurement, tool

I. INTRODUCTION

Pull Requests (PRs), also known as merge requests, are
increasingly used in software development to separate devel-
opment effort from integration into the codebase. The decision
to include (merge) changes into the codebase results from a
code review process carried out by a developer (a reviewer),
usually different from the author of the changes. The benefits
of code review include preventing potential defects, enhancing
code readability, and sharing knowledge of the source code [1],
[2]. Version control platforms like GitHub assist reviewers by
providing tools to visualize changed code (e.g., diff views),
suggest improvements, and leave comments. These platforms
also present PRs as a list for reviewers to select from.

Previous studies have attempted to identify the socio-
technical factors influencing the decision to merge PRs [3]-[6],
which have driven research on developing ranking techniques
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Fig. 1. PRECOG architecture and workflow

for pull and code review requests [7], [8]. Building on our
previous study [9] examining the triggers and effects of
confirmation bias and decision fatigue during code review,
we want to investigate how more informed decisions based
on objective factors (i.e., software metrics that indicate how
complex, large, critical, or potentially poorly designed the code
in the PRs is) can help reviewers select an appropriate PR
to review from a set of pre-assigned PRs. To that end, we
introduce PRECOG, a Visual Studio Code extension that can
serve as a basis for investigating different (socio-)technical
metrics to enhance empirical-based decisions for reviewers.
Building upon the original Pull Request plugin developed by
Microsoft, PRECOG offers: (i) a visual representation of each
PR’s difficulty, and (ii) an automatically generated list ranking
PRs based on their difficulty. This difficulty is defined by a set
of metrics collected from various data sources, i.e., CodeQL
and SonarCloud, in this version of the tool.

The remainder of this paper is structured as follows: Section
IT presents PRECOG’s architecture and workflow. Section III
presents PRECOG’s user evaluation on an open-source project,
Java Spring. Section IV discusses the applications of PRECOG,
followed by Section V, which reviews related work, and
Section VI concludes this paper.

II. APPROACH

Conceptually, the architecture of PRECOG, as shown in
Figure 1, consists of various data sources (blue boxes in the
schema) whose data are aggregated by a server to compute
the different metrics, and then transmitted to a client to be
displayed (green boxes in the schema) to a reviewer.

The implementation involves adding a client (PRECOG Ex-
tension) to the GitHub Pull Request plugin and an aggregator
(PRECOG Analyze Server). Data are collected by the server
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from SonarCloud, GitHub, and artifact (i.e., query results)
produced by CodeQL (a code analysis engine developed by
GitHub to query code) GitHub actions. Once processed, the
data can be retrieved by the PRECOG client via the GitHub
plugin and displayed to the reviewer.

A. PRECOG Extension

In addition to the original features of the GitHub Pull
Request plugin, PRECOG supports the visualization of a PR
difficulty and automatically ranks PRs based on their difficulty.

1) PR difficulty: The visualization of a PR’s difficulty,
shown in Figure 2, consists of a radar chart displayed on each
PR overview page. The radar axes define several metrics, each
with configurable thresholds that normalize their values to a
common scale from 0 to 4.

The radar uses CodeQL to measure three class-level metrics.
The first, cyclomatic complexity, quantifies the number of
independent paths through the code and indicates how difficult
it is to understand and maintain. The Chidamber—Kemerer lack
of cohesion (LCOM) assesses whether a class represents a
single abstraction or multiple concerns: a high score indicates
a “god class,” which is harder to maintain. Finally, instability
measures the degree of coupling between classes, computed
from efferent coupling (C¢), the number of outgoing depen-
dencies, and afferent coupling (C,), the number of ingoing
dependencies, obtained via CodeQL: Instability = C./(C. +
C,). Together, these three metrics capture different aspects of
software quality: internal complexity (cyclomatic complexity,
LCOM) and inter-class dependencies (instability). For each
PR, a difficulty score is calculated based on the area of the
radar. This score is then used to rank the PR list from easiest
to most difficult automatically.

In addition to the radar metrics, the plugin retrieves con-
textual information from SonarCloud: the number of modified
files, the number of modified lines, and the percentage of new
test coverage. These data inform reviewers about the PR’s

scope. For instance, in Figure 2, the PR exhibits a cyclomatic
complexity of 2 across two modified files.

2) Auto-ranked PRs list: The difficulty score is used to
sort PRs in a drop-down list from least complex (relative
to the configured metrics) to most complex. The rationale
is that, for a reviewer to select a PR, they need a general
understanding of the various PR difficulties. Manually sorting
a list of PRs might involve reading the title and description to
gauge difficulty, which, for many PRs, can take considerable
effort and time. PRECOG seeks to simplify this process by
automatically sorting the PRs, easing the reviewer’s task.
Depending on the context (time available, state of mind, etc.),
the reviewer can select a PR from the top (easier PRs), the
bottom (harder PRs), or the middle of the list.

B. PRECOG analyze server

A central component of the architecture is the PRECOG
analyze server. Its main purpose is to collect data and metrics
from different data sources to provide them to the PRECOG
plugin extension. PRECOG is designed to be generic and con-
figurable regardless of languages and metrics. Each analyzed
repository can define a specific configuration file that the
server will first retrieve. This file specifies metrics to compute,
how to compute them (i.e., which data source to contact),
and the threshold value for each metric to build the radar
chart. The rationale is that each repository will require a
specific configuration tailored to the development team and
the programming languages used. The server is meant to be
hosted by an organization or a team, as it uses credentials and
tokens specific to their repositories and data sources.

C. Data sources

The tools used to analyze repositories and PRs are standard,
as the plugin’s goal is not to compute new metrics but to
inform the reviewer of different measurements during the
review. To this end, PRECOG mainly relies on SonarCloud and
CodeQL, each triggered by GitHub Actions when a specific PR
is created or new code is pushed to the PR branch. PRECOG
itself can be easily extended to consider other metrics or data
sources (e.g., new CodeQL queries) using configuration files.

III. USER EVALUATION

This section presents our results from an empirical user eval-
uation of PRECOG on the open-source Java Spring framework.
We chose Spring because it is well-maintained and receives
continuous PRs. We randomly selected nine open PRs in the
repository. The only criterion was that the selected PRs must
not conflict with the main branch, as conflicting PRs would
be trivially rejected with a comment asking to resolve the
conflict. For PRECOG, such PRs in conflict would not trigger
the necessary GitHub Actions. For the configuration, we used
the data sources and metrics presented in Section II.

We relied on convenience sampling and a LinkedIn post
to recruit participants. In total, the evaluation involved nine
participants, which is similar to related work [10]. Two par-
ticipants had less than 6 months of software development



experience, 4 had experience ranging from 1 to 5 years, and
2 had experience ranging from 5 to 10 years. On a scale from
1 to 5, three participants rated their expertise in code review
as 4, one as 3, four as 2, and one as 1.

A. Data collection

Each session is recorded and begins by asking the partici-
pant for their agreement, and to install and configure the plugin
on Visual Studio Code on their machine, following a given
procedure. We then ask the participant to complete two tasks:

1) Ranking the PRs: First, each participant has 20 minutes
to manually rank the 9 PRs from least complex to most
complex. No guidelines are provided to participants regarding
difficulty, and each participant must use their own criteria.
Once the twenty minutes have ended, the participants are
given the list of PRs ranked by the plugin. We then ask them
to compare their list with the auto-ranked list and give their
opinion and interpretation of the differences.

2) Evaluating the PR difficulty: Secondly, each participant
is asked to read the radar chart of four PRs: the ones they rated
as the least and most complex in the first use case, and the
ones that PRECOG ranked as the least and most complex. We
then ask participants to fill out a questionnaire to determine (i)
whether the radar informs them about the PR’s difficulty, and
(i1) whether the radar is consistent with the PR’s difficulty.

At the end of the evaluation, we asked each participant to
complete a standard User Experience Questionnaire (UEQ)
[11], [12], a heavily validated, state-of-the-art questionnaire
that measures user experience based on established scales:
Attractiveness (do users like or dislike the product?), Per-
spicuity (is it easy to familiarize oneself with the product?),
Efficiency (can users complete their tasks without unnecessary
effort?), Dependability (does the user feel in control of the
interaction?), Stimulation (is it exciting and motivating to use
the product?), and Novelty (is the product innovative and
creative?). In addition to the UEQ, we ask participants to
answer questions about their overall experience (see Figure
5), strengths and weaknesses of the plugin, and if they have
any suggestions for metrics to add or remove.

The questionnaires,the use cases, collected data, and data
analysis are available in our replication package: https://github.
com/snail-unamur/precog-plugin-evaluation

B. Results

1) Ranking PR evaluation: The results of the PRs ranking
evaluation are presented as a Sankey Diagram in Figure 3,
where the left column contains the PRs automatically ranked
by PRECOG from the least (ranked 1) to the most complex
(ranked 9) based on the enabled metrics, and the right column
shows where the participants placed the corresponding PR.

Two observations can be drawn from the diagram. Firstly,
the rankings of PRECOG and the participants differ signif-
icantly. For instance, the PR identified by PRECOG as the
most complex (PR #9) received highly divergent rankings from
participants: only one rated it as most complex, while two
placed it at the opposite end. Secondly, participants’ rankings
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Fig. 3. Results of the ranking use case
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Fig. 4. UEQ scales (Mean and Error bar)

also vary significantly, with PRs ranked in different positions.
This indicates that each participant uses different criteria to
rank the PRs. For example, when a participant was asked
which criteria they used, they indicated that one of the PRs
used concurrency, which they ranked higher because they were
less experienced with this aspect. When asked if the easier
PRs were correctly ranked, four participants agreed. However,
when asked about the difficult PRs, four participants disagreed,
and one strongly disagreed, emphasizing the divergence in
rankings between PRs perceived as easier or difficult.

As shown by the results, ranking a list of PRs is not
easy, as subjective factors influence participants’ rankings.
This divergence highlights the difficulty of capturing human
perception of difficulty through a single metric-based ranking.
Future work will explore how subjective factors, such as
developer experience or familiarity with specific technologies,
could be systematically integrated into our approach.

2) User experience evaluation: Participant responses to
the UEQ were analyzed using the UEQ Data Analysis Tool
[12]. The tool calculates scores for six user experience scales.
Responses, originally on a 1-to-7 scale, are converted to a
range from -3 (negative) to +3 (positive). These values are
then used to compute the mean and error bar for each scale.
Results for the six scales are reported in Figure 4.

The results show that, among the six scales, three stand out:
Attractiveness, Perspicuity, and Efficiency, with Perspicuity
receiving the highest score. This suggests that PRECOG pro-
vides clear, understandable information, thereby demonstrating
potential to enhance developer efficiency. In addition, PRECOG
is perceived as an attractive tool.

Conversely, the Novelty scale received the lowest score.
Some participants explained that "PRECOG uses data that are
already available in different places; its strength is to make
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Fig. 5. Results of the questions asked after performing the use cases

them available in the same place.” Others found it difficult to
evaluate the novelty and level of stimulation, as it is designed
for use in a professional working context, which requires
seamless integration, rather than disrupting a given practice.

3) Questionnaire: Figure 5 presents the results of the ques-
tions asked after using PRECOG. Overall, despite the ranking
mismatch, the participants were positive about their experience
with the plugin. One participant indicated that the different
metrics should be better explained to better understand the
visualization. All participants were positive about the added
value of PRECOG for selecting PRs to review, and the majority
would be willing to integrate the plugin into their work.

Regarding PRECOG’s strengths, participants pointed out
the readability and usefulness for quickly having an idea of
the PRs’ complexity. Regarding weaknesses, the participants
pointed out difficulties understanding some metrics, a lack of
other dimensions not directly related to code in the metrics
(e.g., number of changes), and a lack of accuracy in handling
subtle difficulties (e.g., concurrency in the changed code).

Regarding the radar metrics, all participants agree that
the three are useful. Two suggested adding metrics on the
number of modifications (lines and files) involved in the PR
directly in the radar, rather than in a separate text. Finally, one
participant suggested a measure of “context switching” (i.e.,
usually denoting the presence of shotgun surgery code smell)
required to review the PR, and another suggested a measure
of “specification coverage” to gauge the impact of the changes
on the application’s features.

IV. DISCUSSION
A. PRECOG evaluation

The main takeaway from our evaluation is that, despite
obtaining different rankings from participants and PRECOG (as
shown in Figure 3), participants are positive about the potential
impact of PRECOG on PR reviewing. This is confirmed by
the UEQ results, where all dimensions (except Novelty) are
well ranked, and the answers to our final questionnaire. Those
results encourage us to continue our efforts to develop PRE-
COG and explore new dimensions for the radar and ranking.
Similar to our previous work [9], we intend to continue using
a developer-centered approach to gain a deeper knowledge of
how developers select PR for reviewing.

For our future work, although the number of participants
remains limited, our evaluation enabled us to gather several
perspectives and identify potential directions. The participants
have different levels of seniority and varying levels of expertise
in code review. Depending on their experience, they paid
attention to different aspects of the pull requests to sort. For
instance, one junior participant was looking for documentation

in the pull request, or if it was linked to an issue. Another more
senior participant looked for tests and ranked all PRs without
tests as easy, as those would likely be rejected with a comment
asking for testing the changes. A third senior participant
searched code changes for clues, such as multithreading, to
understand what the code does and its technical implications
before ranking the PRs. Those observations are consistent with
the different rankings presented in Figure 3.

The different strategies identified by our participants could
be incorporated into future versions of PRECOG to add more
dimensions to the difficulty scoring, e.g., by leveraging static
analysis on code changes and natural language processing on
PR and issue comments. Several participants were sensitive
to change dispersion, a phenomenon related to the shotgun
surgery code smell. PRECOG relies on class-level metrics,
which are averaged across changes that affect multiple classes.
Additionally, CodeQL does not support querying changes
directly. It only supports querying the classes they affect.
These reduce the precision of the metrics used to estimate
difficulty. They provide an approximation that we will further
validate in our future work.

Finally, the evaluation was done using an open-source
project for which none of our participants is a maintainer.
This means we could not investigate how business-oriented
metrics (e.g., deadlines, customer impact, roadmap) can influ-
ence developers’ PR selection strategies. This requires further
investigation using dedicated research approaches.

B. PRECOG implementation

The main challenge in implementing PRECOG was col-
lecting data from various sources to present to the reviewer.
For the front-end, we relied on the widely used GitHub Pull
Request plugin for Visual Studio Code. Besides reducing our
implementation time and seamlessly integrating with GitHub,
it offers the advantage of using a tool familiar to the reviewers
(as evidenced by the UEQ’s lower Novelty rating). For data
collection, we developed the PRECOG Analysis Server. In
earlier versions, the server relied solely on the SonarCloud
and GitHub APIs to collect metrics, but this approach was too
limited in terms of (i) metric diversity and (ii) extensibility.
To address that, we considered performing measurements on
the server itself, but this would have required setting up yet
another build environment with appropriate access tokens.
Instead, we chose to rely on GitHub Actions for CodeQL,
which leverages the existing continuous integration environ-
ment and gives the development team full control over the
collected data. PRECOG supports adding new metrics to the
radar and computing rankings via configuration files, enabling
customization without modifying the source code.

For our future work, we will focus on two implementation
aspects: (i) defining dedicated CodeQL queries to collect met-
rics capturing the dimensions identified during our evaluation
(e.g., the number of context switches required to perform the
review and the number of features impacted). And (ii) allowing
developers to customize the ranking and dimensions in the
radar, based on a locally defined profile.



V. RELATED WORK

Previous research has investigated the criteria that influence
whether a PR is accepted or rejected. These studies examine
various dimensions, including meta-information (e.g., number
of modified files, age of the project) [13]-[15], code-related
aspects such as the presence of code smells [5], and social
factors related to the contributors [16]. Our work comple-
ments this line of research. We aim to make explicit and
visible measurable aspects of PRs to help developers make
an informed choice when selecting a PR to review. Some of
this information, like the number of modified files, is already
available in PRECOG. In our future work, we intend to extend
this list to other data and enhance the radar and ranking.

Additional research has addressed PR prioritization using
algorithms or machine learning techniques [7], [17], [18].
Some approaches have also focused on recommending PRs
to specific reviewers based on expertise or past interactions
[19], [20]. Such approaches could be envisioned for PRECOG
to rank the different PRs. However, ML-based and other
recommendation approaches usually require large amounts of
data, which are not always available. In our case, PRECOG can
be used by various developers regardless of the project history.
Yet, personal expertise and past interactions with the codebase
are an interesting path to explore for our future work.

Finally, studies have aimed to enhance the review and
recommendation process by improving how PR characteris-
tics are visualized or presented to reviewers. Rahman et al.
[21] investigated how a graphical visualization of developers’
contributions, expertise, collaborations, and current workloads
can help managers assign reviews. In our case, we assume a
developer has already received a batch of PRs to review and
must select which to start with. In their recent work, G6¢men
et al. [10] explored how metrics and an overall risk score
derived from a change impact analysis combining call graph-
based dependency analysis and history mining techniques can
help ranking and reviewing PRs. They validated their approach
through two focus groups with 7 participants, emphasizing the
potential benefits of change-impact analysis for code review.
This was also suggested by some participants during our
empirical evaluation. We intend to explore how lightweight
change impact analysis can be integrated into PRECOG.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented PRECOG, a Visual Studio Code
plugin that visualizes a PR’s difficulty and ranks PRs using
a defined difficulty score. PRECOG is based on the GitHub
Pull Request plugin. It aims to help reviewers make more
informed decisions when selecting a PR to review and increase
reviewers’ awareness of PR characteristics during review.

We conducted an empirical user evaluation of PRECOG
on the open-source Java Spring framework. In total, nine
participants were asked to complete two tasks: ranking a list
of PRs and assessing their difficulty. Additionally, participants
had to answer a UEQ and specific questions about the experi-
ment. Our results show that for PR ranking, subjective factors
influence PR positions, leading to divergence in participants’

rankings. Nevertheless, the UEQ and subsequent questions
show that all participants see PRECOG’s potential benefits.
In our future work, we will extend PRECOG by including ad-
ditional dimensions. To that end, we will explore how to define
new CodeQL queries and leverage additional data sources. We
will also enhance customization for specific developer profiles
to account for other factors, such as experience and familiarity
with technologies, to produce a tailored ranking and adjust
the visualization of PRs. Finally, we will evaluate PRECOG
in a full-scale experiment (e.g., using focus groups) to gain a
deeper knowledge of how developers select PR for reviewing.
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