
Energy Codesumption, Leveraging Test Execution for Source
Code Energy Consumption Analysis

Jérôme Maquoi
jerome.maquoi@unamur.be
NADI, University of Namur

Namur, Belgium

Maxime Cauz
NADI, University of Namur

Namur, Belgium
maxime.cauz@unamur.be

Benoît Vanderose
NADI, University of Namur

Namur, Belgium
benoit.vanderose@unamur.be

Xavier Devroey
NADI, University of Namur

Namur, Belgium
xavier.devroey@unamur.be

Abstract
The software engineering community has increasingly recognized
sustainability as a key research area. However, developers often
have limited knowledge of effective strategies to reduce software
energy consumption. To address this, we analyze energy consump-
tion in software execution, aiming to raise developer awareness
by linking energy consumption with each line of code. We rely on
unit test executions to identify energy-intensive executions and
manually analyze five hot and five cold spots to identify potentially
energy-intensive source code constructs. Our findings suggest a
link between the energy consumption of the source code and the
number of objects’ attributes created within that code. These results
lay the groundwork for further analysis of the relationship between
object instantiation and energy consumption in Java.

CCS Concepts
•Hardware→ Power estimation and optimization; • Software
and its engineering→ Software testing and debugging.

Keywords
energy consumption, source code analysis, test execution, java
ACM Reference Format:
Jérôme Maquoi, Maxime Cauz, Benoît Vanderose, and Xavier Devroey.
2025. Energy Codesumption, Leveraging Test Execution for Source Code
Energy Consumption Analysis. In 33rd ACM International Conference on the
Foundations of Software Engineering (FSE Companion ’25), June 23–28, 2025,
Trondheim, Norway. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3696630.3728707

1 Introduction
Reducing the environmental impact of all aspects of IT, including
energy consumption of running software, is becoming crucial to
achieving a more sustainable society. In recent years, various as-
pects of software sustainability and green software engineering
have been investigated by the research community [4, 20, 22–24, 27].
In particular, [17] has shown that developers recognize, to a certain

FSE Companion ’25, Trondheim, Norway
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in 33rd ACM
International Conference on the Foundations of Software Engineering (FSE Companion
’25), June 23–28, 2025, Trondheim, Norway, https://doi.org/10.1145/3696630.3728707.

extent, the challenges associated with software energy consump-
tion. However, they often lack knowledge of effective strategies
to reduce their software’s energy footprint. To bridge this gap, we
need (i) methods to measure and report source code energy con-
sumption and (ii) identify code constructs that increase energy
usage to develop appropriate tooling.

This short paper lays the foundations for our research objective:
gaining a deeper understanding of the underlying causes of energy
consumption from the source code. More specifically, we answer
the following research question (RQ): how does the source code of
a Java project impact its energy consumption? For that, we rely on
JoularJX [16], a state-of-the-art tool, to measure energy consump-
tion at the source code level of Java projects (i.e., each execution
branch is associated with its energy consumption). Based on the
measurements, we identified high- and low-energy-intensive parts
of the code and performed a manual analysis to identify recurring
code constructs.

2 Background and related work
A recent survey [13] highlights the need for improved skills among
developers in energy-aware development. Developing such skills
should be paired with raising developer awareness about the energy
consumption of their code, which requires tools that can assess the
energy consumption associated with the source code.
Energy consumption assessment. The first method relies on
theoretical models to estimate consumption without direct measure-
ments. For example, the TEEC model estimates CPU, memory, and
disk power usage during application execution through established
mathematical expressions [1]. Alternatively, physical measurement
utilizes a power meter connected to the hardware. This approach
provides the most accurate representation of energy consumption
during software execution. For instance, a framework that detects
energy hotspots in Android applications employs a physical power
meter for accurate detection of these energy-intensive areas [3].
More recently, hardware sensors with software interfaces have been
able to measure components like CPUs, GPUs, RAMs, and disks.
Manufacturers provide interfaces for power data, such as Intel’s
Running Average Power Limit (RAPL) for CPUs and NVIDIA Man-
agement Library (NVML) for NVIDIA GPUs. RAPL provides CPU
electricity consumption data to the operating system [25], making
it popular in research for CPU power measurement [11, 14, 26].

https://orcid.org/0009-0006-3576-0757
https://orcid.org/0000-0002-1234-1772
https://orcid.org/0000-0001-9752-0085
https://orcid.org/0000-0002-0831-7606
https://doi.org/10.1145/3696630.3728707
https://doi.org/10.1145/3696630.3728707
https://doi.org/10.1145/3696630.3728707

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Maquoi et al.

It can be used directly, for example, to compare the energy con-
sumption of various Java I/O libraries and methods [18], or through
specialized tools: such as PowerAPI, a tool that provides real-time
insights into the power consumption of software applications [10],
and JoularJX, used in this work, which is designed for monitor-
ing power usage of Java projects at the source code level [16]. It
works as a Java-based agent that seamlessly integrates with the
Java Virtual Machine (JVM) at the program’s startup.
Development tools. [8] highlights the challenge of notifying
developers about increased energy consumption in applications
during Continuous Integration (CI). It indicates that developers’
tests can identify energy regressions due to code changes, though
effectiveness varies by configuration. In contrast, we focus on a
more detailed analysis at the source code level.

[24] explored the relationship between source code patterns
and energy consumption. Specifically, they examined how design
patterns, code smells, and refactoring techniques impact energy
consumption. Their findings suggest that, in general, implementing
design patterns may decrease energy efficiency, while removing
code smells tends to enhance it. They found no conclusive link
between refactoring techniques and energy consumption. In this
study, we aim to investigate the relationship between source code
and energy consumption by analyzing the effects of Java construc-
tors on energy usage.

Several studies have investigated the energy consumption asso-
ciated with mobile applications. This area of research is critical due
to the concerns developers have regarding battery performance [7].
For example, [7] evaluated eight mobile UI automation frameworks
for mobile app energy efficiency, finding that some can increase
energy consumption by up to 2200%. They also provided a decision
tree to help developers choose the best framework for their needs.
[12] researched energy-related code issues in Android, which can
be identified through code inspection, leading to the creation of
ecoCode, a SonarQube plugin that identifies energy-inefficient code
structures. They compiled a catalog of 40 such issues for the An-
droid platform. Unlike these two studies, our focus is on projects
beyond mobile applications.

Spectrum-based Energy Leak Localization (SPELL) [21] identi-
fies energy hotspots in programs using fault localization methods.
Experiments on five projects demonstrated SPELL’s effectiveness
in helping developers improve energy consumption. Unlike SPELL,
targeting energy hotspots, our approach investigates potential con-
nections between hotspots and the associated source code.

The Power Measurement Toolkit (PMT) [5] is a high-level library
for collecting power consumption data from Python and C++ code
across CPU and GPU architectures. Evaluated against a benchmark,
PMT effectively assesses application energy efficiency through an
intuitive interface on various hardware configurations. A key dis-
tinction between this study and our approach lies in the require-
ment for PMT to modify the source code to include instructions for
initiating and terminating measurements. In contrast, our approach
aims to measure energy consumption by executing project tests
without modifying the source code.

Table 1: Projects specifications used for the evaluation

Spring Boot Spoon

Version v3.1.4 v10.4.2
Commit SHA 3ed1f1a064a10e53adc2ad8c0b4-

6a4b2c148ee21
066f4cf207359e06d30911a553d-
edd054aef595c

JDK version 19 17

Total / Failed / Ignored tests 4217 / 0 / 12 4276 / 0 / 12

Lines of Code (LOC) 23,358 28,739

Class Coverage 76% (795 / 1037) 97% (922 / 943)
Method Coverage 70% (4662 / 6630) 88% (6691 / 7546)
Line Coverage 68% (16031 / 23,358) 87% (25,045 / 28,739)
Branch Coverage 65% (5902 / 9062) 77% (10,822 / 14,020)

3 Evaluation Setup
To answer our RQ, we analyze two Java projects, Spoon [19] and
Spring Boot1, using JoularJX [16] to measure their code energy
consumption by executing their test suites. We manually analyzed
the highest and lowest consuming code locations to identify code
constructs. Our results are available in our replication package [15].
Energy consumption measurement. Energy measurements,
even when conducted on the same computer, can be influenced by
various factors. We follow the best practices [6] to account for this.
First, we freeze the system’s configurations and ensure that only
our software runs so other background system processes operate
uniformly across all experiments. All the experiments are executed
on a dedicated Ubuntu 22.04.5 server with 64 Intel(R) Xeon(R) Gold
6326 (2.90GHz) and 256GB of RAM. We also warm up the system
by conducting a five-minute preliminary test before the actual
measurements to stabilize the temperature.

As pointed out by [8], executing a project’s test suite provides an
effective method for approximating the total energy consumption
of the project. In our case, we execute the projects’ test suite 30
times to account for randomness [2, 6] using a modified JoularJX
based on v2.8.2 to add line numbers to the collected data (as il-
lustrated in Listing 1). To prevent temperature increases between
executions leading to artificially elevated energy consumption, we
implement a one-minute cooling down period between each test
suite execution. Lastly, we maintain a stable room temperature for
the testing equipment to mitigate any environmental factors that
might affect the energy measurements.

Bash scripts automate cloning project repositories at specific
commits, preparing the JoularJX agent, and executing the JUnit
test suite 30 times per project, including a warm-up phase and rest
intervals between each execution. The resulting data is stored in a
MongoDB database for analysis.
Selected projects. This study analyzes Spoon and Spring-Boot.
Spoon is an open-source library for analyzing, transforming, and
transpilating Java source code. It is well-tested and has high code
coverage, ensuring energy consumption can be measured across a
large part of the source code. Spring-Boot is a widely adopted frame-
work, making it relevant for our evaluation, for creating standalone
Java applications such as microservices and large-scale enterprise
systems. It streamlines the Java development process by providing
pre-configured templates and dependencies. This study focuses on

1https://github.com/spring-projects/spring-boot

https://github.com/spring-projects/spring-boot

Energy Codesumption, Leveraging Test Execution for Source Code Energy Consumption Analysis FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

spoon .[...]. jdt.JDTBasedSpoonCompilerTest.

testOrderCompilationUnits 35

spoon .[...]. jdt.JDTBasedSpoonCompiler.buildUnits 418

spoon .[...]. jdt.JDTBatchCompiler.getUnits 282

spoon .[...]. jdt.TreeBuilderCompiler.buildUnits 82

Listing 1: Example of Java stack trace from the spoon project
with, for each frame, its corresponding line number

the spring-boot-project/spring-boot sub-project. The characteristics
of those two projects are presented in Table 1.
Data analysis. The data collected by JoularJX during the experi-
ment comprises energy consumption linked to Call Traces (CTs).
Each CT indicates a nesting of method calls with the corresponding
energy consumed along that specific execution point. For example,
Listing 1 shows an example of a stack trace with four lines (called
frames) from the Spoon project indicating that method testOr-
derCompilationUnits calls method buildUnits at line 35, which
calls method getUnits at line 418, etc. Linked to an energy con-
sumption value, for instance 318 joules, this stack trace is called
a call trace. The energy consumption represents the energy con-
sumed by the CPU for the entire stack trace for one execution of
the Spoon test suite. We store each collected call trace and its cor-
responding energy consumption value, generated by executing the
corresponding test suite for a project, in a MongoDB database to
ease the analysis.

Following Cruz’s recommendations [6], we execute a series of
steps to process and analyze the data collected from the database.
(i) We retain CTs only for those instances where JoularJX collected
energy consumption data at least 25 times, as this threshold ensures
the suitability of the data for our intended analysis. This results in
50 CTs for Spring Boot and 43 CTs for Spoon; (ii) We filter outliers
from our dataset using the standard deviation method consisting
in removing all the data points that deviate from the mean more
than three times the standard deviation [6], i.e., |𝑥 − 𝑥 | > 3𝑠 where
𝑥 is the sample mean, x is the value of the measurement and s is
standard deviation of the sample. This allows us to exclude extreme
values that may distort our analysis, thereby providing a more
accurate representation of typical energy consumption patterns.
After this filtering, 48 CTs remain for Spring Boot and 40 fo Spoon;
(iii) We perform a Shapiro-Wilk test to evaluate the normality of
the remaining data. This statistical test enables us to detect any
non-normal data distributions that could impact the reliability of
our subsequent analyses. We exclude call traces with non-normal
distributions from the dataset as they might be a symptom of a
problem during the energy consumption measurement. Following
this step, 27 CT’s remain for Spring Boot and 31 for Spoon.

For this short paper, we limit our manual analysis to the five CTs
that exhibit the highest and lowest energy consumption for each
project (5 × 2 × 2 = 20 CTs analyzed in total) to identify potential
patterns in the source code. For each frame in the CT pointing to a
specific line of code, we categorize the frame’s method to determine
its specific role (e.g., getters, setters, finders, constructors, delega-
tors, etc.). This categorization primarily relies on methods’ names.
The list of method roles identified during our analysis is presented
in Table 2. This analysis enables us to formulate hypotheses regard-
ing whether particular coding practices or structures are linked to

Table 2: Method roles discovered during the manual analysis

Method role Definition

Builder (bui.) Modifies the internal state of an object and typically returns the object itself
for method chaining

Constructor (con.) Initialize a new object
Delegator (del.) Delegates something to another method
Factory (fac.) Creates something, a new object or something else
Finder (fin.) Searches something in a data structure
Formatter (for.) Converts an object into a string representation to make it human-readable

or structured in a specific way
Getter (get.) Gets the parameters of an object
Lifecycle manager
(lif.)

Orchestrates the various phases or states of a process, such as initialization,
refresh or shutdown

Listener (lis.) Responds to events or changes in states within a system
Serializer (ser.) Handles the process of converting objects into a format that can be stored or

transmitted, often using serialization and sometimes applying compression
techniques

Setter (set.) Sets the values of the parameters of an object
Test (tes.) Each method with a test annotation, each method whose job is to make

assertions
Utility (uti.) Provides common operations or tasks, often related to system or file ma-

nipulation
Visitor (vis.) Separates algorithms from the objects on which they operate

increased energy usage, thereby informing further exploration of
energy-efficient programming techniques. Future work includes
analyzing more call traces to confirm our emerging results. Due
to space limitation, an example of CT analysis is present in the
replication package.

4 Evaluation results
Energy Consumption. Figure 1 illustrates the energy consump-
tion distributions for each project’s five most energy-intensive and
the five least energy-intensive call traces. Call traces CT1 to CT5
are the highest energy consumers in the Spring Boot project, while
CT6 to CT10 are the lowests. For the Spoon project, CT11 to CT15
are the highest energy consumers, and CT16 to CT20 are the low-
est. Table 3 details each call trace’s mean and standard deviation.
Spoon’s highest energy consumption ranges from 78.42 to 318.07
joules, which is significantly higher than Spring Boot’s 15.58 to
80.47 joules. However, Spoon’s minimum energy usage averages
0.18 to 0.38 joules, compared to Spring Boot’s 2.46 to 3.02 joules,
suggesting that, overall, Spoon is less energy-intensive in terms of
unit test execution.
Code Patterns. During our manual analysis, we collected data
presented in Table 3, which revealed a notable pattern. Specifically,
we found that 7 out of the 10 most energy-intensive call traces,
respectively CT1, CT2, CT4, CT5, CT11, and CT14, involved the use
of constructors. This observation prompts an inquiry into whether
creating Java objects through constructors significantly influences
energy consumption. However, further examination indicated that
5 out of 10 least energy-intensive call traces, respectively CT6, CT7,
CT8, CT9 and CT10, also utilized constructors.

We expanded our analysis to investigate hidden non-static at-
tributes generated during constructor execution in each call trace.
Hidden attributes are not directly defined in a class but are created
during object initialization, often due to associations with other
classes (inheritance, composition, reference, etc.). Using a debugger,
we assessed variable states at the end of each call trace, placing
breakpoints after the last execution line to examine the program
state and constructor-created attributes. Table 3 lists the number
of attributes associated with the constructors identified in each CT

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Maquoi et al.

CT1 CT2 CT3 CT4 CT5
0

20

40

60

80

En
er

gy
 C

on
su

m
pt

io
n

(J)

(a) Distribution of the five highest
CT for Spring Boot

CT6 CT7 CT8 CT9 CT10
0

1

2

3

4

5

En
er

gy
 C

on
su

m
pt

io
n

(J)

(b) Distribution of the five lowest CT
for Spring Boot

CT11 CT12 CT13 CT14 CT15
0

100

200

300

400

En
er

gy
 C

on
su

m
pt

io
n

(J)

(c) Distribution of the five highest
CT for Spoon

CT16 CT17 CT18 CT19 CT20
0.0

0.2

0.4

0.6

0.8

En
er

gy
 C

on
su

m
pt

io
n

(J)

(d) Distribution of the five lowest CT
for Spoon

Figure 1: Distribution of the energy consumption of the five
highest and five lowest CT of the Spring Boot and Spoon

Table 3: Gathered data for each call trace of the Spoon and
Spring Boot projects

CT Mean 𝜎 # frames Method roles # attr. # tot. attr.

Highest spring-boot CT

CT1 80.47 2.65 3 2 con., 1 fac. 5 203
CT2 29.64 5.93 7 1 con., 3 fac., 1 fin., 1 get. 14 250
CT3 15.58 8.63 8 1 con., 1 del., 2 get., 2 lis. 9 26
CT4 34.85 6.97 4 1 con., 1 del., 1 fac., 2 get. 2 181
CT5 24.82 3.08 10 1 con., 5 del., 3 fac., 1 get. 1 153

Lowest spring-boot CT

CT6 2.93 0.72 6 1 con., 4 del., 1 fin. 0 0
CT7 3.02 0.93 6 1 con., 4 del., 3 fac. 30 41
CT8 2.67 1.11 7 1 con., 1 del., 5 fac. 1 25
CT9 2.46 0.73 11 1 con., 4 del., 2 fac., 2 get., 1

lif., 1 other
0 0

CT10 2.98 0.26 3 1 con., 1 del., 1 fac. 0 0

Highest spoon CT

CT11 103.54 14.33 2 1 con., 1 ser. 1 500+
CT12 113.77 14.93 65 2 fac., 50+ vis. 0 0
CT13 318.07 70.24 4 2 bui., 1 fin., 1 lif. 0 0
CT14 78.42 21.31 3 1 con., 2 fac., 27 446
CT15 222.32 44.21 2 1 lis., 1 uti. 0 0

Lowest spoon CT

CT16 0.31 0.12 4 3 for., 1 other 0 0
CT17 0.38 0.17 5 1 bui., 1 fac., 1 fin., 1 get., 1 set. 0 0
CT18 0.31 0.16 3 3 bui. 0 0
CT19 0.31 0.16 5 3 fin., 1 vis., 1 other 0 0
CT20 0.18 0.08 12 1 del., 2 fac., 5 fin., 1 get., 3 vis. 0 0

(# attr.) with the overall total of hidden attributes defined within
those constructors (# tot. attr.).
Impact of source code on energy consumption. Answering
our RQ, our findings suggest a link between energy-intensive

call trace constructors and the generation of numerous hidden
attributes. Specifically, 6 out of the 7 most energy-consuming con-
structors produced between 181 and over 500 attributes, while
the least energy-intensive ones generated only 0 to 41 attributes.
To support this observation, we conducted both Spearman’s and
Kendall’s correlation tests on our dataset. Spearman’s test demon-
strated a moderate correlation that is not statistically significant
(𝜌 = 0.439, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.052). In contrast, Kendall’s test showed
a moderate correlation that is statistically significant (𝜏 = 0.4308,
𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.0138). This suggests that energy costs may stem from
the quantity and complexity of generated attributes rather than
just the constructors themselves, highlighting the impact of object
creation on energy consumption in Java applications.

5 Conclusion and Future Work
Our findings suggest significant hidden complexity in constructors’
attributes among the highest CTs across both projects. Specifically,
these constructors explicitly declare between 1 and 27 attributes,
while the total number of hidden attributes ranges from 26 to over
500, as shown in Table 3. There appears to be a potential correlation
between the energy consumption of the CTs and the difference
between the total number of hidden attributes and the number of
attributes declared in these constructors.

This complexity highlights the need for a tool to automate the
identification and counting of attributes within classes, enabling
a comprehensive assessment of attribute creation across all CTs.
Automating this process will enhance our understanding of how
attribute creation influences energy consumption while ensuring
consistency and accuracy in attribute counting. Additionally, this
tool could categorize method roles across CTs, facilitating a system-
atic analysis of energy usage beyond constructors and revealing
the relationship between code structure and energy consumption.

A limitation of this study lies in the energy measurements from
JoularJX. Although RAPL reliably measures energy consumption,
its accuracy is lower than direct power meters [9]. However, the
uniform bias across all call traces supports consistent comparative
analysis within the dataset.

Future work should consider: (i) Categorizing method roles using
objective and systematic criteria rather than relying solely on their
names. (ii) Automating the process of identifying and counting
attributes within classes, which is currently performed manually.
(iii) Expanding the analysis beyond the spring-boot-project/spring-
boot folder to include additional subprojects and other types of
projects, allowing us to evaluate the applicability of our findings
and provide a comprehensive view of energy consumption trends
across the ecosystem. (iv) Integrating static analysis data to corre-
late energy consumption with relevant metrics, revealing patterns
related to energy efficiency and insights into factors affecting en-
ergy consumption. (v) Analyzing multiple commits to track the
impact of code changes on energy consumption, providing valuable
information for sustainable software development practices.

Acknowledgments
This research was funded by the CyberExcellence by DigitalWallo-
nia project (No. 2110186), funded by the Public Service of Wallonia
(SPW Recherche).

Energy Codesumption, Leveraging Test Execution for Source Code Energy Consumption Analysis FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

References
[1] Hayri Acar, Gülfem I Alptekin, Jean-Patrick Gelas, and Parisa Ghodous. 2016. The

Impact of Source Code in Software on Power Consumption. IJEBM 14 (2016), 42–
52. http://ijebm-ojs.ie.nthu.edu.tw/IJEBM_OJS/index.php/IJEBM/article/view/
693

[2] Andrea Arcuri and Lionel Briand. 2014. A Hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. STVR 24, 3 (2014),
219–250. doi:10.1002/stvr.1486

[3] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roychoud-
hury. 2014. Detecting Energy Bugs and Hotspots in Mobile Apps. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, Hong Kong China, 588–598. doi:10.1145/2635868.2635871

[4] Alexandre Bonvoisin, Clément Quinton, and Romain Rouvoy. 2024. Understand-
ing the Performance-Energy Tradeoffs of Object-RelationalMapping Frameworks.
In SANER ’24’. IEEE, Rovaniemi, Finland, 626–636. doi:10.1109/SANER60148.2024.
00069

[5] Stefano Corda, Bram Veenboer, and Emma Tolley. 2022. PMT: Power Measure-
ment Toolkit. In 2022 IEEE/ACM International Workshop on HPC User Support
Tools (HUST). IEEE, Dallas, TX, USA, 44–47. doi:10.1109/HUST56722.2022.00011

[6] Luís Cruz. 2021. Green Software Engineering Done Right: a Scientific Guide to Set
Up Energy Efficiency Experiments. http://luiscruz.github.io/2021/10/10/scientific-
guide.html. doi:10.6084/m9.figshare.22067846.v1 Blog post..

[7] Luis Cruz and Rui Abreu. 2021. On the Energy Footprint of Mobile Testing
Frameworks. IEEE TSE 47, 10 (Oct. 2021), 2260–2271. doi:10.1109/tse.2019.2946163

[8] Benjamin Danglot, Jean-Rémy Falleri, and Romain Rouvoy. 2024. Can We Spot
Energy Regressions Using Developers Tests? EMSE 29, 5 (July 2024), 121. doi:10.
1007/s10664-023-10429-1

[9] Muhammad Fahad, Arsalan Shahid, Ravi Reddy Manumachu, and Alexey Las-
tovetsky. 2019. A Comparative Study of Methods for Measurement of Energy of
Computing. Energies 12, 11 (Jan. 2019), 2204. doi:10.3390/en12112204

[10] Guillaume Fieni, Daniel Romero Acero, Pierre Rust, and Romain Rouvoy. 2024.
PowerAPI: A Python Framework for Building Software-Defined Power Meters.
JOSS 9, 98 (June 2024), 6670. doi:10.21105/joss.06670

[11] Mathilde Jay, Vladimir Ostapenco, Laurent Lefevre, Denis Trystram, Anne-Cécile
Orgerie, and Benjamin Fichel. 2023. An Experimental Comparison of Software-
Based PowerMeters: Focus on CPU and GPU. In 2023 IEEE/ACM 23rd International
Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE, Bangalore,
India, 106–118. doi:10.1109/CCGrid57682.2023.00020

[12] Olivier Le Goaer and Julien Hertout. 2023. ecoCode: A SonarQube Plugin to Re-
move Energy Smells from Android Projects. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’22). Association
for ComputingMachinery, New York, NY, USA, 1–4. doi:10.1145/3551349.3559518

[13] Sung Une Lee, Niroshinie Fernando, Kevin Lee, and Jean-Guy Schneider. 2024.
A Survey of Energy Concerns for Software Engineering. JSS 210 (April 2024),
111944. doi:10.1016/j.jss.2023.111944

[14] Kenan Liu, Gustavo Pinto, and Yu David Liu. 2015. Data-Oriented Characteri-
zation of Application-Level Energy Optimization. In Fundamental Approaches
to Software Engineering (Lecture Notes in Computer Science), Alexander Egyed
and Ina Schaefer (Eds.). Springer, Berlin, Heidelberg, 316–331. doi:10.1007/978-
3-662-46675-9_21

[15] Jérôme Maquoi. 2025. Replication package of Energy Codesumption, Leveraging
Test Execution for Source Code Energy Consumption Analysis. University of Namur.
doi:10.5281/zenodo.15276280

[16] Adel Noureddine. 2022. PowerJoular and JoularJX: Multi-Platform Software
Power Monitoring Tools. In 18th International Conference on Intelligent Environ-
ments. IEEE, Biarritz, France, 1–4. doi:10.1109/IE54923.2022.9826760

[17] Zakaria Ournani, Romain Rouvoy, Pierre Rust, and Joël Penhoat. 2020. On Re-
ducing the Energy Consumption of Software: From Hurdles to Requirements. In
ESEM 2020 - ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM ’20). Association for Computing Machinery, New
York, NY, USA, 1–12. doi:10.1145/3382494.3410678

[18] Zakaria Ournani, Romain Rouvoy, Pierre Rust, and Joel Penhoat. 2021. Evaluating
The Energy Consumption of Java I/O APIs. In ICSME 2021 - 37th International
Conference on Software Maintenance and Evolution (Proceedings of the 37th In-
ternational Conference on Software Maintenance and Evolution (ICSME)). IEEE,
Luxembourg / Virtual, Luxembourg, 1–11. doi:10.1109/ICSME52107.2021.00007

[19] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. 2015. Spoon: A Library for Implementing Analyses and Transforma-
tions of Java Source Code. SPE 46 (2015), 1155–1179. doi:10.1002/spe.2346

[20] B. Penzenstadler, V. Bauer, C. Calero, and X. Franch. 2012. Sustainability in
Software Engineering: A Systematic Literature Review. In 16th International
Conference on Evaluation & Assessment in Software Engineering (EASE 2012).
Institution of Engineering and Technology, Ciudad Real, 32–41. doi:10.1049/ic.
2012.0004

[21] Rui Pereira, Tiago Carção, Marco Couto, Jácome Cunha, João Paulo Fernandes,
and João Saraiva. 2020. SPELLing out Energy Leaks: Aiding Developers Locate
Energy Inefficient Code. JSS 161 (March 2020), 110463. doi:10.1016/j.jss.2019.
110463

[22] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo
Fernandes, and João Saraiva. 2017. Energy Efficiency across Programming Lan-
guages: How Do Energy, Time, and Memory Relate?. In Proceedings of the 10th
ACM SIGPLAN International Conference on Software Language Engineering (SLE
2017). Association for Computing Machinery, New York, NY, USA, 256–267.
doi:10.1145/3136014.3136031

[23] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo
Fernandes, and João Saraiva. 2021. Ranking programming languages by energy
efficiency. Sci. Comput. Program. 205 (May 2021), 102609. doi:10.1016/j.scico.2021.
102609

[24] Olivia Poy, M Ángeles Moraga, Félix García, and Coral Calero. 2025. Impact
on Energy Consumption of Design Patterns, Code Smells and Refactoring Tech-
niques: A Systematic Mapping Study. Journal of Systems and Software 222 (April
2025), 112303. doi:10.1016/j.jss.2024.112303

[25] Guillaume Raffin and Denis Trystram. 2025. Dissecting the Software-Based
Measurement of CPU Energy Consumption: A Comparative Analysis. IEEE
Transactions on Parallel and Distributed Systems 36 (2025), 96–107. doi:10.1109/
TPDS.2024.3492336 arXiv:2401.15985 [cs]

[26] Andreas Schuler and Gabriele Kotsis. 2022. MANAi – An IntelliJ Plugin for
Software Energy Consumption Profiling. arXiv:2205.03120 [cs]

[27] Thibault Simon, David Ekchajzer, Adrien Berthelot, Eric Fourboul, Samuel Rince,
and Romain Rouvoy. 2025. BoaviztAPI: A Bottom-Up Model to Assess the Envi-
ronmental Impacts of Cloud Services. SIGENERGY Energy Inform. Rev. 4, 5 (April
2025), 84–90. doi:10.1145/3727200.3727213

http://ijebm-ojs.ie.nthu.edu.tw/IJEBM_OJS/index.php/IJEBM/article/view/693
http://ijebm-ojs.ie.nthu.edu.tw/IJEBM_OJS/index.php/IJEBM/article/view/693
https://doi.org/10.1002/stvr.1486
https://doi.org/10.1145/2635868.2635871
https://doi.org/10.1109/SANER60148.2024.00069
https://doi.org/10.1109/SANER60148.2024.00069
https://doi.org/10.1109/HUST56722.2022.00011
http://luiscruz.github.io/2021/10/10/scientific-guide.html
http://luiscruz.github.io/2021/10/10/scientific-guide.html
https://doi.org/10.6084/m9.figshare.22067846.v1
https://doi.org/10.1109/tse.2019.2946163
https://doi.org/10.1007/s10664-023-10429-1
https://doi.org/10.1007/s10664-023-10429-1
https://doi.org/10.3390/en12112204
https://doi.org/10.21105/joss.06670
https://doi.org/10.1109/CCGrid57682.2023.00020
https://doi.org/10.1145/3551349.3559518
https://doi.org/10.1016/j.jss.2023.111944
https://doi.org/10.1007/978-3-662-46675-9_21
https://doi.org/10.1007/978-3-662-46675-9_21
https://doi.org/10.5281/zenodo.15276280
https://doi.org/10.1109/IE54923.2022.9826760
https://doi.org/10.1145/3382494.3410678
https://doi.org/10.1109/ICSME52107.2021.00007
https://doi.org/10.1002/spe.2346
https://doi.org/10.1049/ic.2012.0004
https://doi.org/10.1049/ic.2012.0004
https://doi.org/10.1016/j.jss.2019.110463
https://doi.org/10.1016/j.jss.2019.110463
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1016/j.scico.2021.102609
https://doi.org/10.1016/j.scico.2021.102609
https://doi.org/10.1016/j.jss.2024.112303
https://doi.org/10.1109/TPDS.2024.3492336
https://doi.org/10.1109/TPDS.2024.3492336
https://arxiv.org/abs/2401.15985
https://arxiv.org/abs/2205.03120
https://doi.org/10.1145/3727200.3727213

	Abstract
	1 Introduction
	2 Background and related work
	3 Evaluation Setup
	4 Evaluation results
	5 Conclusion and Future Work
	Acknowledgments
	References

