
Generating Code Tours Using Locally-Runnable LLMs
Martin Balfroid

martin.balfroid@unamur.be
NADI, University of Namur

Namur, Belgium

Abstract
Onboarding new developers is a considerable overhead, requiring
senior developers to provide mentorship and documentation. Code
tours—structured guides to key code sections—can streamline this
process, yet their manual creation still requires time and effort. This
research investigates how to automate the generation of debugging-
focused code tours using locally runnable Large Language Models
(LLMs), which provide more confidentiality, stability, and repro-
ducibility than cloud-based models. We plan to address three key
challenges: (1) selecting relevant code segments, (2) generating clear
and context-aware explanations, and (3) automatically evaluating
the quality of generated tours. Ultimately, our goal is to reduce the
onboarding burden on senior developers by automatically gener-
ating persistent, verifiable documentation artifacts to help junior
developers navigate and understand a codebase.

CCS Concepts
• Computing methodologies→ Natural language generation;
• Software and its engineering → Software development pro-
cess management.

Keywords
large language models, code tour, developer onboarding
ACM Reference Format:
Martin Balfroid. 2025. Generating Code Tours Using Locally-Runnable LLMs.
In 33rd ACM International Conference on the Foundations of Software Engi-
neering (FSE Companion ’25), June 23–28, 2025, Trondheim, Norway. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3696630.3731462

1 Introduction
Onboarding new developers into an organization is crucial but
challenging; the most recommended strategies are mentoring, de-
bugging, and documenting [8, 10]. Still, it requires significant time
and effort from senior developers - up to 30% in the case of the
CERN project [18] - reducing their availability for complex work.

Among various onboarding strategies, code tours—step-by-step
guides of critical code sections—have shown promise in improv-
ing code navigation and understanding [20]. However, like other
documentation artifacts, code tours require manual creation and
maintenance by senior developers. Recent advancements in Large
Language Models (LLMs) have demonstrated their capability to
generate code explanations and assist in onboarding tasks [1, 2,
7, 13, 14, 16, 18], suggesting their potential for automating code

FSE Companion ’25, Trondheim, Norway
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in 33rd ACM
International Conference on the Foundations of Software Engineering (FSE Companion
’25), June 23–28, 2025, Trondheim, Norway, https://doi.org/10.1145/3696630.3731462.

tour generation. Our preliminary findings show that LLMs can also
produce code tours to explain stack traces [4] to guide debugging,
a typical entry task [8].

Nevertheless, most studies rely on state-of-the-art, closed-weight
models, raising concerns about reproducibility, stability, and pri-
vacy [2, 17]—critical issues for companies handling sensitive code-
bases. We propose fine-tuning open-weight, locally-runnable LLMs
(≤ 10B parameters) to generate high-quality, debugging-focused
code tours. Successfully fine-tuning these models requires tackling
three key research questions: (RQ1) identifying relevant points of
interest for debugging, (RQ2) adapting an LLM to generate code
tours, and (RQ3) designing an evaluation framework to assess
their quality. Ultimately, we aim to develop, iteratively, a transpar-
ent, reproducible, and privacy-preserving approach for automating
debugging-oriented code tours, enhancing the onboarding experi-
ence for new developers.

2 Background and Related Work
2.1 Onboarding Developers
Documentation andmentoring [10] play a critical role in supporting
onboarding. However, in large projects like those at CERN, men-
toring junior developers can take up to 30% of senior developers’
time [18], reducing their time for other valuable tasks. Debugging is
typically assigned to new developers as an onboarding task [8]. Al-
though debugging is a practical learning approach, it assumes that
newcomers can efficiently navigate the code. Code tours [6] are
structured walkthroughs of key code segments that can help navi-
gate and understand a new codebase [20]. However, their creation
and maintenance require human effort, which limits scalability.
Despite recent studies that have explored automating code tour
generation [4], this is an underexplored research area.

2.2 Selecting Relevant Code Segments
Selecting relevant code segments is a key challenge in automating
debugging-focused code tours. In prior work [4], we used stack
trace analysis for step selection. While effective, this is only one
approach among many possible alternatives, leaving other selection
strategies largely unexplored. Spectrum-based Fault Localization
(SFL) identifies program elements more likely to contain faults and
has been successfully applied in debugging scenarios [9]. Hotspot
detection [22] prioritizes frequently modified or complex areas of
the codebase. Thus, they may be transferable to the context of step
selection for debugging-focused code tours.

https://orcid.org/0000-0002-1318-1184
https://doi.org/10.1145/3696630.3731462
https://doi.org/10.1145/3696630.3731462


FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Martin Balfroid

2.3 Generating Documentation
Although LLMs improve code comprehension, reduce cognitive
load, and generate explanations adapted to user needs, their effec-
tiveness varies depending on user expertise and interaction pat-
terns [1, 13, 16]. In the context of code tours, generated explanations
often suffer from verbosity and lack cohesion between steps [4],
indicating further work to improve code tour generation. Moreover,
a common concern is confidentiality [2] when using LLMs to ex-
plain proprietary code. Indeed, many studies rely on closed-weight
models, which, while powerful, require sending proprietary code
to external servers. Besides, concerns about reproducibility and
stability have been raised [17]. Open-weight LLMs offer greater
control but typically require domain-specific fine-tuning to match
the performance of proprietary models.

However, fine-tuning alone does not guarantee alignment with
the developer’s non-functional needs [15] - such as clarity, effi-
ciency, and scrutability [4]. So, to better align LLM-generated expla-
nations with developer expectations, Reinforcement Learning from
Human Feedback (RLHF) has been widely used [15], particularly in
conversational agents such as ChatGPT. RLHF involves fine-tuning
a model by rewarding outputs that align with human preferences
on dimensions such as clarity, relevance, and style. While RLHF [15]
improves alignment with developer expectations, its reliance on hu-
man annotations makes it impractical if you have limited resources.
To address RLHF reliance on humans, Reinforcement Learning
from AI Feedback (RLAIF) leverage LLM-as-a-Judge method-
ologies, which replace human annotations with judgments from
larger models, to reduce annotation costs while still improving
alignment [3]. For example, CodeUltraFeedback [24] applies the
LLM-as-a-Judge [26] methodology to assess alignment with non-
functional requirements in code-related tasks, such as readability,
complexity, and style—dimensions often challenging to capture
using traditional automated metrics. A core component of RLAIF
is knowledge distillation, where larger LLMs generate synthetic
datasets to fine-tune smaller models iteratively [23, 25]. However,
careful selection of teacher models is necessary, as many companies
impose licensing restrictions that prevent proprietary LLMs from
being used to fine-tune competitor models. Retrieval-Augmented
Generation (RAG) [12] offers an alternative to extensive fine-
tuning by dynamically retrieving relevant documents during infer-
ence to provide task-specific context. Correia et al. [7] developed a
conversational agent that augments LLM responses with project-
specific documentation, achieving expert-rated satisfaction levels
exceeding human in more than half of the cases.

2.4 Evaluating Quality
Evaluating the quality of generated code tours is a non-trivial chal-
lenge, as their usefulness extends beyond traditional documentation
metrics. Our prior work [4] has adapted quality dimensions from
recommender system research [21] to assess code tours along three
key criteria: (1) Transparency – Clearly explains how the code
works. (2) Efficiency – Helps identify and report inaccuracies.
(3) Scrutability – Facilitates quick navigation and understanding.
While these dimensions provide a structured framework, existing
evaluations have been limited in scale and consistency. Manual
assessments introduce subjectivity, and inter-rater agreement has

not been extensively studied in this context. LLM-as-a-Judge [26]
uses LLMs aligned with human preference as proxies for human
annotators. This is already a scalable alternative to human evalua-
tion in related tasks for RLAIF, such as assessing readability and
clarity in code [24].

3 Research Approach
This section presents our research approach to automating the
generation of debugging-focused code tours. We address three
primary research questions (RQs):

RQ1 Given a failing test, how can we identify points of interest
relevant to debugging for inclusion in code tours?

RQ2 How can locally-runnable LLMs be adapted to generate con-
textually relevant explanations of code tour steps?

RQ3 How can we evaluate the quality and usefulness of the gen-
erated code tours?

To validate our approach, we will begin with RQ3 (how to evalu-
ate quality), which supports RQ2 (generating better explanations),
while RQ1 (step selection) can progress in parallel. We will outline
our approach for each research question, discuss prior work, pro-
pose future work, detail our evaluation methods, and highlight the
expected contributions. If we need participants for an experiment,
we will recruit them through the university and alumni channels
until we reach saturation.

3.1 RQ1: Selecting Relevant Code Segments
Following our preliminary study [4], where we explored using stack
traces to structure code tours, we aim to broaden our selection
strategy. However, since our primary focus is to aid debugging for
onboarding, our approach will always follow a call path between
a failing test and a faulty method—but which path? That is the
question!

Prior & Future Work. Our previous work [4] leveraged stack
traces to structure code tours, as they provide an execution flow
from a failing test to a faultymethod.While stack traces are valuable
debugging aids, it remains unclear whether alternative heuristics
can improve coherence and debugging efficiency. In practical de-
bugging scenarios, faults are supposedly unknown. Therefore, we
will use fault localization methods [9] to identify faulty methods.
Then, multiple heuristics will be evaluated to filter paths between
the failing test and the potentially faulty method.

Evaluation.Wewill assess the effectiveness of our path selection
strategies using both quantitative and qualitative methods. Quan-
titatively, we will measure the alignment between selected steps
and hotspots [22]. Qualitatively, we will conduct semi-structured
interviews with developers and students, asking them to assess the
relevance of a sequence of steps in debugging tasks. We remain
open to refining our evaluation methods based on early findings or
feedback from the research community.

Contribution. Methodologically, our research will improve step
selection for structuring code tours that are coherent, practical, and
debugging-efficient.



Generating Code Tours Using Locally-Runnable LLMs FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

3.2 RQ2: Generating Documentation
Our preliminary study [4], use a close-weight, cloud-based model,
GPT3.5 [5], which raise some concern of stability, reproducibil-
ity [17] and, more importantly, privacy [2]. Our approach will be
to align locally-runnable LLMs to generate qualitative code tour
explanations.

Prior & Future Work. Using GPT3.5 [5], we generated expla-
nations for the selected steps. Our preliminary analysis revealed
two main limitations: (1) explanations often contained redundant
or low-level details, and (2) explanations lacked contextual con-
nections across steps. We intend to adapt open-weight, locally-
runnable LLMs via RLAIF to enhance explanation quality with
minimal human involvement. Additionally, our initial experiments
were conducted on Defects4J [11], which introduces a risk of the
LLM knowing the codebase [17]. This threatens the validity as
there could be some overfitting. Thus, we will conduct future exper-
iments using GitBug-Java [19] and private codebases to mitigate
overfitting risks.

Evaluation. Using the checklist from Section 3.3, we will ask
humans and LLMs to assess the generated explanations’ quality. We
will also involve developers in exploratory sessions combining quan-
titative and qualitative methods to evaluate how well the generated
code tours support understanding and navigation of the codebase.
For example, we plan to measure debugging time, completed by
surveys on perceived clarity and usefulness. We also expect the
model to face limitations when detecting, reasoning, and explain-
ing cause-effect chains spanning multiple functions or modules.
Thus, our evaluation will include scenarios with more complex in-
teractions. If we observe signs of shortcomings, we should delegate
the detection of such interactions to causal reasoning techniques
(this would be part of RQ1, then). Thus, the LLM’s role would be to
explain, in free-form text, the reasoning produced.

Contribution. Methodologically, we will introduce a framework
for adapting locally-runnable, open-weight LLMs via Reinforce-
ment Learning from AI Feedback (RLAIF).

3.3 RQ3: Evaluating Quality
Wewill refine an evaluation checklist to ensure that generated expla-
nations effectively support debugging. Initially, we will collect open-
ended evaluations from LLMs based on a root criterion—usefulness
for debugging—allowing them to score explanations and justify
their ratings. By analyzing these justifications, we should extract
recurring evaluation patterns (in a survey coding manner) until sat-
uration is reached, forming an initial set of criteria and a checklist
for each.

Prior & Future Work. We developed an initial checklist to
assess the quality of generated code tours inspired by evaluation
frameworks from recommendation systems [21]. However, this
checklist has only been tested with a single rater on a small subset
of generated tours, so there is no inter-rater agreement analysis.
Our goal is to improve the checklist iteratively. First, we plan to
collect LLM-generated assessments to extract recurring evaluation
criteria. Once a stable inter-rater agreement is, if possible, reached
among LLMs, we will introduce human evaluators to compare their
assessments with LLM judgments.

Evaluation. Once a preliminary checklist is established, we will
validate it in two stages. First, we measure inter-rater agreement
among LLMs to ensure consistency. Once a stable agreement is
reached, we will introduce human evaluators and compare their
assessments against LLM judgments. This iterative process ensures
the checklist captures meaningful quality indicators while minimiz-
ing reliance on busy developers.

Contribution. Empirically, we will provide a dataset of LLM-
generated code tour explanations, evaluated by LLM and human
experts, along with an analysis of the inter-rater agreement to
assess the reliability of LLM-based evaluation. Theoretically, we
will refine iteratively a checklist for assessing code tour quality,
ensuring a structured evaluation framework. Methodologically, we
will propose an iterative pipeline for extracting evaluation criteria
using LLM-as-a-Judge.

4 Conclusion
This work investigates using Large Language Models (LLMs) to
automate debugging-focused code tours to support developer on-
boarding. We proposed an approach that leverages stack traces for
selecting relevant code segments and LLMs for generating step-by-
step explanations. Our preliminary results demonstrate that while
automatic generation is feasible with GPT3.5 [5], key limitations
persist, such as redundant explanations, low-level details, and a lack
of contextual linking between steps. Furthermore, the community
has highlighted concerns about closed-weight models, asking for
research about the open-weight ones.

To address these challenges, we outlined three main research
directions: (1) improving step selection by exploring alternative
methods, (2) enhancing explanation generation by aligning locally-
runnable LLMs using Reinforcement Learning from AI Feedback
(RLAIF), and (3) refining evaluation criteria through an iterative
process leveraging both LLM and human assessments.

Our expected contributions include an iterative pipeline to gen-
erate and evaluate code tours automatically. To validate these con-
tributions, we plan to conduct empirical studies measuring the
effectiveness of different step selection techniques, the impact of
fine-tuning strategies on explanation quality, and the reliability of
LLM-based evaluation frameworks.

While our preliminary evaluation provides initial insights into
the feasibility and limitations of LLM-generated code tours, fur-
ther work is required to enhance their effectiveness and scalability.
We invite feedback from the research community to refine our ap-
proach, explore additional validation methodologies, and assess the
broader impact of LLM-generated onboarding documentation in
real-world settings.

Acknowledgments
This research was supported by the ARIAC project (No. 2010235)
funded by the Service Public de Wallonie (SPW Recherche), and
the SQUAL.AI project (No. 2025/658876) supported by Wallonie-
Bruxelles International (WBI).

References
[1] Elijah Kayode Adejumo and Brittany Johnson. 2024. Towards Leveraging LLMs

for Reducing Open Source Onboarding Information Overload. In Proceedings of
the 39th IEEE/ACM International Conference on Automated Software Engineering,



FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Martin Balfroid

ASE 2024, Sacramento, CA, USA, October 27 - November 1, 2024, Vladimir Filkov,
Baishakhi Ray, and Minghui Zhou (Eds.). ACM, New York, NY, USA, 2210–2214.
https://doi.org/10.1145/3691620.3695286

[2] Maider Azanza, Juanan Pereira, Arantza Irastorza, and Aritz Galdos. 2024. Can
LLMs Facilitate Onboarding Software Developers? An Ongoing Industrial Case
Study. In 36th International Conference on Software Engineering Education and
Training, CSEE&T 2024, Würzburg, Germany, July 29 - Aug. 1, 2024. IEEE, New
York, NY, USA, 1–6. https://doi.org/10.1109/CSEET62301.2024.10662989

[3] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,
Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon,
Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain,
Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller,
Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosiute, Liane Lovitt,
Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemí Mercado, Nova Das-
Sarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,
Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton,
Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-
Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom
Brown, and Jared Kaplan. 2022. Constitutional AI: Harmlessness from AI Feed-
back. CoRR abs/2212.08073 (2022). https://doi.org/10.48550/ARXIV.2212.08073
arXiv:2212.08073

[4] Martin Balfroid, Benoît Vanderose, and Xavier Devroey. 2024. Towards LLM-
Generated Code Tours for Onboarding. In Proceedings of the Third ACM/IEEE
International Workshop on NL-based Software Engineering, NLBSE 2024, Lisbon,
Portugal, 20 April 2024, Maliheh Izadi, Andrea Di Sorbo, and Sebastiano Panichella
(Eds.). ACM, New York, NY, USA, 65–68. https://doi.org/10.1145/3643787.3648033

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Win-
ter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-
Shot Learners. In Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Had-
sell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). Curran Associates, Inc.,
Red Hook, NY, United States. https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[6] Jonathan Carter. 2020. Codetour - Visual StudioMarketplace. https://marketplace.
visualstudio.com/items?itemName=vsls-contrib.codetour

[7] João Lucas Correia, Morgan C. Nicholson, Daniel Coutinho, Caio Barbosa, Marco
Castelluccio, Marco Aurélio Gerosa, Alessandro F. Garcia, and Igor Steinmacher.
2024. Unveiling the Potential of a Conversational Agent in Developer Support:
Insights from Mozilla’s PDF.js Project. In Proceedings of the 1st ACM International
Conference on AI-Powered Software, AIware 2024, Porto de Galinhas, Brazil, July
15-16, 2024, Bram Adams, Thomas Zimmermann, Ipek Ozkaya, Dayi Lin, and
Jie M. Zhang (Eds.). ACM, New York, NY, USA, 10 – 18. https://doi.org/10.1145/
3664646.3664758

[8] Barthélémy Dagenais, Harold Ossher, Rachel K. E. Bellamy, Martin P. Robillard,
and Jacqueline de Vries. 2010. Moving into a new software project landscape. In
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, Jeff Kramer,
Judith Bishop, Premkumar T. Devanbu, and Sebastián Uchitel (Eds.). ACM, New
York, NY, USA, 275–284. https://doi.org/10.1145/1806799.1806842

[9] Higor Amario de Souza, Marcos Lordello Chaim, and Fabio Kon. 2016. Spectrum-
based Software Fault Localization: A Survey of Techniques, Advances, and Chal-
lenges. CoRR abs/1607.04347 (2016). arXiv:1607.04347 http://arxiv.org/abs/1607.
04347

[10] An Ju, Hitesh Sajnani, Scot Kelly, and KimHerzig. 2021. A Case Study of Onboard-
ing in Software Teams: Tasks and Strategies. In 43rd IEEE/ACM International Con-
ference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE,
New York, NY, USA, 613–623. https://doi.org/10.1109/ICSE43902.2021.00063

[11] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database of
existing faults to enable controlled testing studies for Java programs. In Interna-
tional Symposium on Software Testing and Analysis, ISSTA ’14, San Jose, CA, USA
- July 21 - 26, 2014, Corina S. Pasareanu and Darko Marinov (Eds.). ACM, New
York, NY, USA, 437–440. https://doi.org/10.1145/2610384.2628055

[12] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[13] StephenMacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul Denny,
Seth Bernstein, and Juho Leinonen. 2023. Experiences from Using Code Expla-
nations Generated by Large Language Models in a Web Software Development
E-Book. In Proceedings of the 54th ACM Technical Symposium on Computer Science

Education, Volume 1, SIGCSE 2023, Toronto, ON, Canada, March 15-18, 2023, Mau-
reen Doyle, Ben Stephenson, Brian Dorn, Leen-Kiat Soh, and Lina Battestilli (Eds.).
ACM, New York, NY, USA, 931–937. https://doi.org/10.1145/3545945.3569785

[14] Daye Nam, Andrew Macvean, Vincent J. Hellendoorn, Bogdan Vasilescu, and
Brad A. Myers. 2023. In-IDE Generation-based Information Support with a Large
Language Model. CoRR abs/2307.08177 (2023). https://doi.org/10.48550/ARXIV.
2307.08177 arXiv:2307.08177

[15] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022. Train-
ing language models to follow instructions with human feedback. In Advances
in Neural Information Processing Systems 35: Annual Conference on Neural Infor-
mation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, Novem-
ber 28 - December 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle
Belgrave, K. Cho, and A. Oh (Eds.). Curran Associates, Inc., Red Hook, NY,
United States. https://proceedings.neurips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html

[16] Jonan Richards andMairieliWessel. 2024. What YouNeed is what YouGet: Theory
of Mind for an LLM-Based Code Understanding Assistant. In IEEE International
Conference on Software Maintenance and Evolution, ICSME 2024, Flagstaff, AZ,
USA, October 6-11, 2024. IEEE, New York, NY, USA, 666–671. https://doi.org/10.
1109/ICSME58944.2024.00070

[17] June Sallou, Thomas Durieux, and Annibale Panichella. 2024. Breaking the
Silence: the Threats of Using LLMs in Software Engineering. In Proceedings of
the 2024 ACM/IEEE 44th International Conference on Software Engineering: New
Ideas and Emerging Results, NIER@ICSE 2024, Lisbon, Portugal, April 14-20, 2024.
ACM, New York, NY, USA, 102–106. https://doi.org/10.1145/3639476.3639764

[18] Ioan Cristian Schuszter and Marius Cioca. 2024. Increasing the Reliability of
Software Systems Using a Large-Language-Model-Based Solution for Onboarding.
Inventions 9, 4 (2024), 79. https://doi.org/10.3390/inventions9040079

[19] André Silva, Nuno Saavedra, and Martin Monperrus. 2024. GitBug-Java: A
Reproducible Benchmark of Recent Java Bugs. In 21st IEEE/ACM International
Conference on Mining Software Repositories, MSR 2024, Lisbon, Portugal, April
15-16, 2024, Diomidis Spinellis, Alberto Bacchelli, and Eleni Constantinou (Eds.).
ACM, New York, NY, USA, 118–122. https://doi.org/10.1145/3643991.3644884

[20] Grace Taylor and Steven Clarke. 2022. A Tour Through Code: Helping Developers
Become Familiar with Unfamiliar Code. In Proceedings of the 33rd Annual Work-
shop of the Psychology of Programming Interest Group, PPIG 2022, The Open Uni-
versity, Milton Keynes, UK & Online, September 5-9, 2022, Simon Holland, Marian
Petre, Luke Church, and Mariana Marasoiu (Eds.). Psychology of Programming
Interest Group, New York, NY, USA, 114–126. https://ppig.org/papers/2022-ppig-
33rd-taylor/

[21] Nava Tintarev and Judith Masthoff. 2015. Explaining Recommendations: Design
and Evaluation. In Recommender Systems Handbook, Francesco Ricci, Lior Rokach,
and Bracha Shapira (Eds.). Springer, New York; London, 353–382. https://doi.
org/10.1007/978-1-4899-7637-6_10

[22] Adam Tornhill. 2024. Your Code as a Crime Scene : Use Forensic Techniques to
Arrest Defects, Bottlenecks, and Bad Design in Your Programs. Pragmatic Bookshelf,
Flower Mound, TX, USA. https://www.torrossa.com/en/resources/an/5241725

[23] YizhongWang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel
Khashabi, and Hannaneh Hajishirzi. 2023. Self-Instruct: Aligning Language
Models with Self-Generated Instructions. In Proceedings of the 61st AnnualMeeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL
2023, Toronto, Canada, July 9-14, 2023, Anna Rogers, Jordan L. Boyd-Graber, and
Naoaki Okazaki (Eds.). Association for Computational Linguistics, Stroudsburg,
PA, USA, 13484–13508. https://doi.org/10.18653/V1/2023.ACL-LONG.754

[24] Martin Weyssow, Aton Kamanda, and Houari A. Sahraoui. 2024. CodeUltraFeed-
back: An LLM-as-a-Judge Dataset for Aligning Large Language Models to Coding
Preferences. CoRR abs/2403.09032 (2024). https://doi.org/10.48550/ARXIV.2403.
09032 arXiv:2403.09032

[25] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng,
Chongyang Tao, Qingwei Lin, and Daxin Jiang. 2024. WizardLM: Empower-
ing Large Pre-Trained Language Models to Follow Complex Instructions. In
The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, Vienna, Austria. https:
//openreview.net/forum?id=CfXh93NDgH

[26] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging LLM-as-a-Judge with MT-Bench
and Chatbot Arena. In Advances in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, Alice Oh, TristanNaumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (Eds.). Curran Associates, Inc.,
Red Hook, NY, United States. http://papers.nips.cc/paper_files/paper/2023/hash/
91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html

https://doi.org/10.1145/3691620.3695286
https://doi.org/10.1109/CSEET62301.2024.10662989
https://doi.org/10.48550/ARXIV.2212.08073
https://arxiv.org/abs/2212.08073
https://doi.org/10.1145/3643787.3648033
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://marketplace.visualstudio.com/items?itemName=vsls-contrib.codetour
https://marketplace.visualstudio.com/items?itemName=vsls-contrib.codetour
https://doi.org/10.1145/3664646.3664758
https://doi.org/10.1145/3664646.3664758
https://doi.org/10.1145/1806799.1806842
https://arxiv.org/abs/1607.04347
http://arxiv.org/abs/1607.04347
http://arxiv.org/abs/1607.04347
https://doi.org/10.1109/ICSE43902.2021.00063
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.48550/ARXIV.2307.08177
https://doi.org/10.48550/ARXIV.2307.08177
https://arxiv.org/abs/2307.08177
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.1109/ICSME58944.2024.00070
https://doi.org/10.1109/ICSME58944.2024.00070
https://doi.org/10.1145/3639476.3639764
https://doi.org/10.3390/inventions9040079
https://doi.org/10.1145/3643991.3644884
https://ppig.org/papers/2022-ppig-33rd-taylor/
https://ppig.org/papers/2022-ppig-33rd-taylor/
https://doi.org/10.1007/978-1-4899-7637-6_10
https://doi.org/10.1007/978-1-4899-7637-6_10
https://www.torrossa.com/en/resources/an/5241725
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.48550/ARXIV.2403.09032
https://doi.org/10.48550/ARXIV.2403.09032
https://arxiv.org/abs/2403.09032
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Onboarding Developers
	2.2 Selecting Relevant Code Segments
	2.3 Generating Documentation
	2.4 Evaluating Quality

	3 Research Approach
	3.1 RQ1: Selecting Relevant Code Segments
	3.2 RQ2: Generating Documentation
	3.3 RQ3: Evaluating Quality

	4 Conclusion
	Acknowledgments
	References

